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I. INTRODUCTION AND NOTATION

The dual space is a very powerful tool in the theory of best
approximations in normed linear spaces and--a well known fact~it can be
used for characterization as well as computation of best approximations. In
metric spaces, however, this dual often consists of the zero functional only
so that, in general, the rich duality theory is not applicable. Many authors
have given characterizations of best approximations in special metric linear
spaces by linear or nonlinear functionals (e.g., [1, 2, 7, 9-11, 13]), but
there does not seem to be an investigation on the functional analytic
background of the "dual spaces" used.

In this paper we shall construct a "nonlinear dual space" and relate some
of its functional analytic properties to the corresponding ones of linear dual
spaces of normed linear spaces. The nonlinear dual can be used to charac
terize best approximations (from linear subspaces) and in special cases it
can be used to compute best approximations with a Remez-type algorithm
(for the latter see [10]).

Let X be a real metric linear space with translation invariant metric d,
and q: X --> IR + the canonical quasinorm which is defined by

q(x) := d(x, 0)

for every x E X. The mapping q has all the properties of a norm but positive
homogenity and this is the reason why approximation theory in metric
linear spaces is so much different from the theory in normed spaces. Unit
balls are neither convex nor even connected in general and there are exam
ples of spaces with one-dimensional nonproximinal subspaces (see [2]).
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If I is a real valued function defined on X, we denote by

{
I/(X)I }1I1II := sup --; X#O
q(X)

the norm of that function whenever this supremum is finite. We say that I is
Lipschitz continuous (with Lipschitz constant k) if for all x, y EX,

I/(x) - l(y)1 ~ k· q(X - y)

holds, I is called odd (even) if

-/(x) = I( -x) (I(x)=/( -x))

holds for all x E X.
Note that for Lipschitz continuous odd functions with Lipschitz constant

k > 0 the norm is always well defined and satisfies

II1II ~k.

Next we denote by

Lipk!X)

the set of all Lipschitz continuous odd functions with Lipschitz constant k.
This set is easily seen to be convex but it is not closed under the linear
operations of addition and scalar multiplication and hence not a linear
space. But if we take

Lip(X):= U Lipk(X),
k>()

then the pair (Lip(X), 11'11) becomes a normed linear space. But as the set of
functions we are constructing is supposed to be an equivalent to the dual
space of a normed linear space and since Lip(X) is not a Banach space in
general (an outline of the proof of this fact will be briefly sketched after
Theorem 7), we fix k > 0 and call Lipk(X) the "nonlinear dual space with
index k." This set is always complete in the topology induced by 11'1/ and, as
will be seen in the next chapter, is closely connected with the dual spaces of
normed linear spaces.

Finally if V c X is a subspace, Lipk( V) and Lip( V) are defined
analogously with V in place of X. When it seems necessary, we denote by
11'llv the norm in Lip(V) and by 11'llx the norm in Lip(X), respectively.
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II. SOME PROPERTIES OF THE NONLINEAR DUAL SPACE
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and

In this chapter we collect some properties of the nonlinear dual spaces
which show that they are in fact very similar to duals of normed linear
spaces. In particular analogous results to the theorems of Alaoglu
Bourbaki, Krein~Milman, and Hahn-Banach will be provided.

To do so, we introduce a weak topology Tk on the nonlinear dual space.
Let k > 0 be fixed. For every finite set a c X, every E > 0, and every
10 E Lipk(X) we define

V~.,(lo):= n {I E Lipk(X); I(x) -/o(x) < d·

The collection of all these sets will form a subbasis for the topology Tk .

Likewise we define

V"., (10) := n {I E Lip(X); I(x) -/o(x) < £}

for 10 E Lip(X) as a subbasis for a topology Ton Lip(X). We then have for
k>O,

LEMMA I. T k and T are locally convex Hausdorff topologies. A net of
functionals (I,d c LipdX) (resp. (lJ) c Lip(X)) converges to 10 E Lipk(X)
(resp. 10 E Lip(X)) in the topology T k (resp. T) if and only if it converges
pointwise.

The proof is not difficult and omitted here, it can be performed like the
proof of Satz (1.2.1) in [10]. We shall now provide a simple fact about
Lipschitz continuous functions with Lipschitz constant k which will be
useful in the sequel.

LEMMA 2. The pointwise limit of a net (lJ) of Lipschitz continuous
functions with Lipschitz index k is again Lipschitz continuous with the same
index k.

Proof Let (1,;,15 E D) be a net of Lipschitz continuous functions (all
with Lipschitz index k) converging pointwise to 10 ; here D is an ordered set
and ">" is the order relation in D. Note that 10Cx) exists for all XE X since

I/o(x)[ :( I/J(x)1 + I/Ax) -lo(x)1

for all 15 E D. If now £ > 0 is given and x, y E X such that q(x - y) > 0 (if
x = y there is nothing to be shown), we may choose 15 0 = 60 (£) E D such
that for all 15 > 15 0 , we have

k· £
I/o(.x)~/J(x)1 :(T'q(x- y)



204

and 6> 60 yields
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1/0 (.,) - lo(y) I

:( I/o(.,)-IAx)1 + I/,j(x)-(j(y)1 + l(j(y)-/o(y)1

:( k . (1 + s) . q( x - y).

This completes the proof since s > 0 was arbitrary. I
We denote by ext(A) the set of all extreme points of a set A and by

co(B) the convex hull of a set B and prove a Krein~Milman-type theorem
for Lipk(X), Part (a) of the proof is a slight modification of the one found
in [5, p. 439].

THEOREM 3. If k > 0 is fixed and K c Lipk(X) is convex and compact
relative to the topology Tk , then

(a) ext(K) of 0,
(b) K=co(ext(K)).

Proof To prove (a) let E be the nonvoid family of all closed extremal
subsets of K ordered by inclusion. If E, is a totally ordered subfamily of E,
then by compactness nE I is nonempty, extremal since it is an intersection
of extremal sets, and is a lower bound for E,. Hence by Zorn's lemma,
there is a minimal element Ao in E. We show that A o contains one element
only and hence is an extreme point.

To this aim assume that II and 12 are two distinct elements of Ao; i.e.,
there is a point Z E X such that

But then

A I := {lEAo;/(z)=inf(a(z),aEA o)}

is a proper subset of A o. On the other hand L I , L 2 E K, ), E (0, 1) and
ALI + (1 -A) L 2 EA I imply

since A o is extremal and from the definition of A I' we conclude

This shows that A, is a proper extremal subset of A o which is a contradic
tion to A 0 being minimal.
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To prove (b), we first show that K is also a compact subset of Lip(X)
relative to the topology T. For, if

is an open cover of K in Lip(X), then by definition

U (A/IIlLipk(X))
flED

is an open cover of K in Lipk(X) which has a finite subcover, say

N

U (AfI(i) Il Lipk(X)),
i~ I

But then of course

N

U A/IU )
i~ I

is a finite subcover of K in Lipk(X),
Since Lip(X) is a locally convex topological linear space with topology

T, we know that

where the closure is taken in the topology T. But by Lemma 1, convergence
of a net (1,,) in the topology T is equivalent to pointwise convergence in IR,
so that Lemma 2 and

co(ext(K)) eKe Lipk(X)

imply

Since Tk is the restriction of T to Lipk(X), we even have

co(ext(K)) c K,

where the closure is taken relative to Tk • This proves (b) since by definition

Kcco(ext(K)). I

Our next step is to prove an Alaoglu-Bourbaki-type theorem which is a
corollary to
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THEOREM 4. For every k > 0 the nonlinear dual space Lipk(X) is compact
relative to the topology Tk •

Proof For every x E X, the interval I, := [ ~ k· q(x), k . q(x)] is a com
pact subset of the real line and by Tychonoffs theorem the product space

P:= Il/,:= {/:X---> U 1,;/(X)E/,}
\-EX XEX

is compact relative to the product topology which is generated by the sets

n {R, (U,); U, c I, open, a c X finite };

here H,: P ---> I, is the projection mapping from P to the component I,. We
recall that a net (/6' JED) P converges to 10EP relative to the product
topology if and only if it converges pointwise in IR.

Since we have the inclusion

P = {/: X ---> IR; I/(x)1 ::s; k· q(x)}

::::J {I: X ---> IR; III11 ::s; k}::::J Lipk(X),

it suffices to show that LipdX) is closed in P relative to the product
topology.

But since convergence of a net (/6' JED) c LipdX) in the product
topology to 10 E P is equivalent to pointwise convergence, this immediately
yields

for all x E X as well as

and together with Lemma 2 we have

which completes the proof. I

We now define for every 10 E Lipk(X) and p > 0 the norm balls by

Since Bd/o, p) is a closed subset of LiPdX) relative to the topology Tb we
have
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COROLLARY 5. The norm unit balls Bk(lo, p) are Tk-compact for every
k > 0, 10 E Lipk(X) and p > O.

Note that the norm unit balls are convex too, so that Theorem 3 can be
applied to Bk(lo, p) in place of K.

Another important tool in the theory of normed linear spaces is the
Hahn-Banach extension theorem, which has numerous applications in
functional analysis as well as optimization and approximation theory. It
can be proved (in an analogous version) for the nonlinear dual spaces con
sidered here. Unlike the classical case, the proof here will be constructive; it
has to be mentioned, however, that the result is not a generalization of the
classical theorem in the case where q is a norm, since the extension con
structed is not linear in general. The extension principle was first used by
McShane [8] in 1934. He used the function L s below in the case where pis
a norm, and showed that it has the same Lipschitz constant as I.

THEOREM 6. Let p: X -+ IR be even and subadditive with p(O) = 0 and let
V c X be a linear subspace. Then every odd function

I: V -+ IR

with

I(u) -/(v) ~ p(u - v)

for all u, v E V has an odd extension L to all of X satisfying

L(x)-L(y)~p(x- y)

for all x, y E X.

Proof For every x E X, we define

LJx) := sup{l(v) - p(x - v), V E V}

and

Li(x) := inf{l(u) + p(x - u), U E V}.

If u, V E V and x E X are chosen arbitrary, we have

l(v) - p(x - v) ~ l(u) + p(u - v) - p(x- v) ~ l(u) + p(x - u),

since p is even and this yields
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for all x E X. Using p(O) = 0 we know that

holds for all v E V and it follows that both L, and L; are extensions of I. If
x, y E X and c; > 0 are chosen arbitrary, we have

L,(x) - L,(y) = sup{/(v) - pix - v)} - sup{ I(u) - p(y - u)}

~ I( v,) - pix - v,) + I: - (/(v,) - p(y - v,))

~ pix - y)+ D

for some V, E V; since <. > 0 is arbitrary this yields

The inequality

L,(x)-LAy)~p(x-y)

L,(x) - L;(y) ~ p(x- y)

for all x, y E X.

for all x, y E X

(1 )

(2 )

can be shown analogously.
If we did not want the extension L to be odd, both L, and L; would have

the desired properties, but since they are not odd in general, we define

LAx) if LAx) > 0,

L(x) := 0 if L,(x)~O~L,(x),

LJ'\j if L;(x)<O.

Since L, as well as L; are extensions of I, so is L. It is easy to see that

-LAx) = L ,( -x) and

for all x E X and this implies - L(x) = L( - x) for all x E X and hence L is
odd.

It now remains to show that L satisfies

L(x)-L(y)~p(x- y)

for all x, y E X. For arbitrary x, y E X, we consider the four cases:

Case 1. L(x) > 0 and L(y) ~ O.

Case 2. L(x»O and L(y)<O.

Case 3. L(x) ~ 0 and L(y) ~ O.

Case 4. L(x)~O and L(y)<O.
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Case 1 follows from (1) and L(x) - L(y) ~ L,.(x) - L,(y). Case 2 follows
from (2) and L(x)-L(y)~L,(x)-Li(y)~Li(X)-Li(Y)'Case 3 is trivial.
Case 4 follows from (2) and L(x)-L(y)~Li(X)-L;(y).This completes
the proof. I

As a consequence of Theorem 6, we shall show that every functional
IE Lipk( V), where V is a linear subspace of X, has a norm-preserving exten
sion to all of X; this fact is formulated in

THEOREM 7. Let k > 0 be fixed and VeX be a linear subspace, then
every IE Lipd V) has a norm-preserving extension L E Lipk(X),

Proof We use the same construction as in the proof of Theorem 6. The
mapping

k· q: X ~ IR

which is defined by

(k'q)(x):= k'q(x)

for every x E X has all the properties required for p in the preceding
theorem, so that it suffices to show that the extension L preserves the norm
if in the construction we replace p by k· q. As L is an extension, it will be
enough to show that

IILllx~ IIIII v·

To this aim choose an arbitrary XEX\{O}. If L(x)=O, then of course
IL(x)l/q(x) ~ IIIII v and we only have to consider:

Case 1. L(x»O.

Case 2. L(x)<O.

For Case 1, we have

IL(x)1 L,(x) I(v)-k'q(x-v)
--=--= sup .
q(x) q(x) lE 1/\:0: q(x)

Now, if for v E V, we have q(x) < q(v), then I(v )/q(v) ~ k yields

q(v)-q(x)
I(v)' ( ~k'(q(v)-q(x))~k'q(x-v)

q v)

or
I(v)-k'q(x-v) I(v)

q(x) ~ q(v) ~ IIIII v·

If on the other hand, q(x) ~ q(v), the last inequality is obvious.

(3)
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Case 2. In this case, by the symmetry of L, we have

IL(x)1 -L(x) L( -x)
-- --- ---
q(x) q(x) q(x) ,

and if we replace x by - x get Case I.

So inequality (3) holds for all x E X and we have

IL(x)1
IILII x = .sup --) ~ IIIII v·

,>,0 q(x

This completes the proof. I
We shall not investigate the numerous consequences of the Hahn

Banach theorem in this context, but only those used in the sequel to charac
terize best approximations in metric linear spaces. Stating the preliminaries
for the approximation theoretic considerations, we need an additional
property of the quasinorm q, which ensures that the unit balls (in the
metric space X) are connected.

We call a quasinorm q: X -> IR monotone, if

q(tx) ~ q(sx)

holds for all t, SE IR with ItI~ lsi.
We shall now briefly sketch the proof of the following:

Remark. If X =1= {O} and the quasinorm q is monotone, then
(Lip(X), 11'11) is not complete.

Sketch oj' Proot: First we note. that

Y.

Lip(X) = U Lipk(X)
k=1

and that by the Baire category theorem it suffices to show that, for all
kEN, Lipk(X) is closed (in Lip(X)) and has no interior points.

Let kEN be fixed. Lemma 2 shows that Lipk(X) is closed in Lip(X). So
letfE Lipk(X) and 1:>0 and XoEX\{O} be chosen arbitrarily. Then define
V:= span {xo} and choose 1 > 6 > 0 such that

I:
q(s' x o) < -k' q(t. x o)

4·

for all SE [0, 6] and tE [1-6,1 +6]. Then choose KE N such that

4· k > K> 2· k
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and define a function h: V --+ ~ by

211

0,

K sgn(et) q( (Ietl - (I - b))' xo),

K sgn(et) q(((l + b) -Ietl)' xo),

0,

letl::;; 1-15,

1-15< letl::;; I,

1< letl < 1+ 15,

letl ): I + b.

One may then show that

(a) h¢Lipk(V),

(b) Ilhll v::;; e,

(c) hE Lip2K(V),

By Theorem 7, h has a norm-preserving extension H to all of X and hence
the function fl := f + H is in Lip(X) and we have

II f - !III = IIHII ::;; e.

But on the other hand

so that fl ¢ LiPk(X), which means that f cannot be an interior point. This
finishes the proof of the remark. I

In the sequel q is always assumed to be a monotone quasinorm. If V eX
is a subset of X and x E X, we define

q(x- V):= inf q(x-v);
l'E v

then we have

LEMMA 8. If V c X is a subspace and x E X\ V, then there is a functional
IE Lip2(X) such that

(a) IIIII = I,

(b) I(x)=q(x- V),

(c) l(x)=/(x+v)forallvEV.

Proof Let Vo be the sum of V and the one-dimensional linear space
spanned by x, i.e.,

Vo := {V+etX;VEV,etE~}.
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We then define 10 : Vo --> IR by
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lo(v + ax) := (sgn(a))' q(ax - V).

10 is continuous and (b) and (c) hold for 1=/0 , Further

for all v E V and a E IR and

{
l/o(v + ax)1 } {q(ax - V) }

sup ) ; v + ax #- 0 = sup ; v + ax #- 0 ~ 1
q(v + ax q(ax + v)

so that

11/0 11 v" = 1.

We now show that for all u, v E V and a, f3 E IR

I/o(u + ax) - lo( v + f3x) I~ 2 . q( (u + ax) - (v + f3x) )

holds, i.e., 10 is in Lip2( Vol. To this aim we consider five cases.

Case 1. Either a = 0 or f3 = O.

Without loss of generality we may assume a = 0, then we have

I/o(u + ax) -/o(v + f3x)1 ~ q(f3x- V) ~ q((f3x + v) - (ax + u)).

Case 2. a> 0 and f3 > O.

Let f. > 0 be given and choose W, E V such that

q(f3x + w,) ~ q(f3x - V) + f.,

then

lo(u + ax) -/o(v + f3x) = q(ax - V) - q(f3x - V)

~ q(ax + (u - v + w,)) - q(f3x + w,) + f.

~ q((ax + u) - (f3x + v)) + f.;

by the same argument one shows that

lo(v + f3x) -/o(u + ax) ~ q((ax + u) - (f3x + v)) + f.

holds and since f. > 0 was arbitrary the result follows.

Case 3. a < 0 and f3 < O.

This case can be treated as in Case 2.
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Case 4. rx >°and f3 < 0.

Since q is monotone we have

I/o(v + rxx) -/o(u + f3x)1 = q(rxx - V) + q(If31 x - V)

:(q((rx+ 1f3I)x- V)+q((If31 +rx)x- V)

:( 2· q((rxx + u) - (f3x + v)).

213

Case 5.rx < °and f3 > 0.

This can be treated as in Case 4.
We have constructed 10E Lip2(Vo) which satisfies (a), (b), and (c) and by

Theorem 7, 10 has a norm preserving extension to all of X. This completes
the proof. I

Setting V:= {o} in the preceding lemma, we have a corollary which
shows that the nonlinear dual space contains "enough" functionals.

COROLLARY 9. If k ~ 2, then

q(x) = max {l(x); IE BAO, I)} for all x E X.

As in the theory of linear dual spaces, we can describe the quasinorm via
the extremal functionals of Bk(O, 1). This will be a consequence of

THEOREM 10. If V is a linear subspace of X, then every fimctionall which
is an extreme point of the unit ball in Lipk( V) has an extremal extension
LEext(Bk(O, I)).

Prool Let E(l) be the set of all norm-preserving extensions of I to all of
X. E(l) is nonempty by Theorem 7 and convex and we shall show that E(l)
is an extremal subset of Bk(O, 1).

For if L 1,L2 EBk (O, 1), ),E(O, 1) and

L:= AL] +(l-A)L2 EE(l),

it follows from L
I
v = I and I being extremal that

since IIL]II v= IIL211 v = IIL l 11 x = IIL211 x = 11I11 v we have

L], L 2 E E(I).

Since pointwise limits of nets (16' is E D) c E(I) are again in E(I), this
shows that E(I) is a closed subset of BAO, 1) relative to the topology Tk
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and hence by Corollary 5 compact, so that by Theorem 3 it has extreme
points. This completes the proof. I

It is easy to see that if x E X'\ (O} and V:= span {x}, the space spanned
by x, then for k ;) 2 the functional I: V ---> IR defined by

I(:xx) := sgn(:x)' q(:xx)

is an extreme functional of the unit ball in Lipk( V). As a consequence of the
preceding theorem, 1 has an extension to an element of ext(Bk(O, I )). We
therefore obtain

COROLLARY 11. If k;) 2, then

q(x)=max{l(x);/Eext(Bk(O,I)l} for all x E X.

III. CHARACTERIZATION OF BEST ApPROXIMATIONS

The approximation problem in a metric linear space considered here is
posed as follows:

If V c X is a linear subspace and x E X\ P, we are looking for elements
ii E V such that

q(.'I> [7) = q(x - V). (4)

Every element vE V that satisfies (4) is called a best approximation (to x
from V in the quasinorm q); the set of all these best approximations is
denoted by

which may be empty of course even when V is finite dimensional.
In this chapter, we give characterizations of best approximations (in the

above sense) by elements of the nonlinear dual space LipdX). The charac
terizing properties and their proofs are very similar to the ones known
from the theory of normed linear spaces (cf. [3, 6, 12]) and they show that
the nonlinear dual space introduced here in many ways behaves like the
linear dual space of a normed linear space.

It remains to be seen, however, what the functionals and the extreme
functionals in particular look like when we consider special metric linear
spaces. As far as it is known to the author this has only been done in very
simple cases (cf. [10]).

The first characterization presented here is a simple corollary to
Lemma 8.
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THEOREM 12. If V c X is a linear subspace and k ~ 2, then v E V is a best
approximation to x E X\ V if and only if there exists a functional I E Lipk(X)
such that

(a) IIIII = 1,

(b) I(x-v)=q(x-v),

(c) l(x)=/(x+v)for all VE V.

Proof If this functional exists, then

q(x- v) = I(x- v) = l(x- v) ~ 11111 q(x- v)= q(x- v)

shows that v is a best approximation. The necessity part of the proof is a
trivial consequence of Lemma 8 and hence omitted. I

In normed linear spaces a best approximation can be characterized by
(a), (b), and (c) of Theorem 12, where I is a continuous linear functional
(cf. [12, p. 18]). The next proposition will show that in many cases of
quasinormed spaces there is no linear functional to characterize best
approximations in this way. We therefore define the set

TtCx-):= {l: X -d~; IIIII = 1, I(x) = q(x - V), I(x) = l(x + v) for all v E V}

which is easily seen to be convex. With this definition we have

PROPOSITION 13. Let k ~ 2 and V c X be a linear subspace. Assume that
for every y E X\ {O} there is a real number t = t( y) > 0 such that

t·q(y»q(t· y).

Then for every x E X\ V with P v(x, q) -# 0, Tt·(x) does not contain a linear
functional.

Proof Let XE X\V with Pv(x, q) -# 0 and VE Pv(x, q). Then suppose I
is a linear functional in Tt( x). Since l( v) = 0 for all v E V and l(x) =
q(x - v) > 0, we have for t = t(x - v) > 0 that

q(t(x- v)) ~ I(t(x- v)) = t '/(x) = t· q(x- v)

which is a contradiction to our assumption. I
Note that the assumption in Proposition 13 is satisfied for every

bounded quasinorm and in particular for every p-norm (0 < p < 1)
(cf. [9, Satz3.3]).

Another important characterization of best approximations in the theory
of normed linear spaces uses extreme functionals of the dual unit ball and
is due to Garkavi [6]; these are also convenient in the usual concrete

640A9-)-2
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spaces because for these spaces the general form of the extremal points is
well known and simple. The characterizations can be generalized to metric
linear spaces, but in this case the extreme functionals are only known for
very simple examples. We define for k ~ 2 and y E X,

Ek(y):= {/Eext(BdO, 1));/(y)=q(y)}

the set of peaking extreme functionals, which by Corollary 11 is always
nonempty. By making natural modifications in the proof of Garkavi's
theorem as given in [4, Theorem 3.9J, we then have

THEOREM 14. If V c X is a linear subspace and k ~ 2 and x E X\ V, then
the following three statements are equivalent:

(A) VE P vCx, q).

(B) To every v E V there is a functional I = I,. E Ek(x - v) such that
I( x - v) - I( x - v) ~ 0.

(C) max{l(x-v)-/(x-v); IEEk(x-v)} ~Ofor all VE V.

Proof (A)-->(B) Let UEPv(X,q) and VEV be chosen arbitrarily.
Then we define the set of peaking functionals

P:= {IE Bk(O, I); I(x- V) = q(x- u)}

and the set

P,:= {I E P; I(x - v) -/(x - v) = sup {loCx - v) -/oCx - v)} }.
tOE P

By Corollary 9, P is always nonempty, further it is convex and closed
relative to the topology Tk and hence by Corollary 5 compact.

Also 1[,12 E BdO, I), ..1. E (0, 1) and 1:= ).{1 + (1 - n 12 E P together with

q(x - v) = I(x - u) = ).{, (x - u) + (1 -..1.) 12(x - v) ~ q(x - v)

imply

and thus P is an extremal subset of Bk(O, I).

If we define

by

F(l):= I(x-v)-/(x-v),
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then F is continuous relative to the topology Tk and if 11 ,12 E Bk(O, 1) and
AE [0, 1], then

F(AI I + (1 - ),) 12 ) = ),F(/[) + (1 - A) F(/2 ).

Further

P" = {IE P; F(I) = max F(lo)}
IOE P

is convex, compact (relative Tk ) and an extremal subset of P, smce
L[, L 2 E P, ), E (0,1) and L := AL[ + (1- A) L 2 E P" together with

F(L) = AF(L[) + (1- A) F(L 2 ) ~ F(L)

imply

By Theorem 3 ext(P) and ext(P,,) are nonempty and F attains its
maximum on P at an extreme point of P. Hence there exists a functional

IE ext(P) c ext(Bk(O, 1))

such that

l(x-v)-/(x-v)~/o(x-v)-lo(x-v) for all 10 E P.

Together with the definition of P it follows that IE Ek(x - v), but by
Theorem 12, there is a functional 10 E P with

from which I(x - v) -/(x - v) ~°is evident.
(B) --+ (C) From (B), it follows immediately that

sup{l(x - v) -/(x - v); IE EAx- v)} ~O

and it remains to be shown that this supremum is actually attained. But if
we define F, P, and P" as in the proof of (A) --+ (B), this follows
immediately from the fact that P" is convex and compact.

(C) --+ (A) Let v E V be chosen arbitrary and IE Ek(x - v) such that

I(x - v) -/(x - v) ~ 0,

then we have

q(x - v) = I(x - v) = I(x - v) + (I(x - v) -/(x- v)) ~ l(x- v) ~ q(x- v)

and hence v is a best approximation to x from V. This completes the
proof. I
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