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[. INTRODUCTION AND NOTATION

The dual space is a very powerful tool in the theory of best
approximations in normed linear spaces and—a well known fact—it can be
used for characterization as well as computation of best approximations. In
metric spaces, however, this dual often consists of the zero functional only
so that, in general, the rich duality theory is not applicable. Many authors
have given characterizations of best approximations in special metric linear
spaces by linear or nonlinear functionals (e.g., [1, 2, 7, 9-11, 13]), but
there does not seem to be an investigation on the functional analytic
background of the “dual spaces” used.

In this paper we shall construct a “nonlinear dual space” and relate some
of its functional analytic properties to the corresponding ones of linear dual
spaces of normed linear spaces. The nonlinear dual can be used to charac-
terize best approximations (from linear subspaces) and in special cases it
can be used to compute best approximations with a Remez-type algorithm
(for the latter see [10]).

Let X be a real metric linear space with translation invariant metric d,
and ¢: X - R, the canonical quasinorm which is defined by

q(x) = d(x,0)

for every x € X. The mapping q has all the properties of a norm but positive
homogenity and this is the reason why approximation theory in metric
linear spaces is so much different from the theory in normed spaces. Unit
balls are neither convex nor even connected in general and there are exam-
ples of spaces with one-dimensional nonproximinal subspaces (see [2]).
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If /is a real valued function defined on X, we denote by

|| :== sup {L[(\—)l x;«éO}
q(x)

the norm of that function whenever this supremum is finite. We say that / is
Lipschitz continuous (with Lipschitz constant k) if for all x, ye X,

[x) =) <k -g(x—»)

holds, / is called odd (even) if

holds for all xe X.
Note that for Lipschitz continuous odd functions with Lipschitz constant
k >0 the norm is always well defined and satisfies

1l <k.
Next we denote by

Lip,(X)

the set of all Lipschitz continuous odd functions with Lipschitz constant £.
This set is easily seen to be convex but it is not closed under the linear
operations of addition and scalar multiplication and hence not a linear
space. But if we take

Lip(X):= {J Lip(X),

k>0

then the pair (Lip(X), ||| ) becomes a normed linear space. But as the set of
functions we are constructing is supposed to be an equivalent to the dual
space of a normed linear space and since Lip(X) is not a Banach space in
general (an outline of the proof of this fact will be briefly sketched after
Theorem 7), we fix k>0 and call Lip,(X) the “nonlinear dual space with
index k.” This set is always complete in the topology induced by ||| and, as
will be seen in the next chapter, is closely connected with the dual spaces of
normed linear spaces.

Finally if V<= X is a subspace, Lip,(¥) and Lip(V) are defined
analogously with V in place of X. When it seems necessary, we denote by
(-]l the norm in Lip(¥V) and by ||| y the norm in Lip(X), respectively.
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II. SOME PROPERTIES OF THE NONLINEAR DUAL SPACE

In this chapter we collect some properties of the nonlinear dual spaces
which show that they are in fact very similar to duals of normed linear
spaces. In particular analogous results to the theorems of Alaoglu-
Bourbaki, Krein-Milman, and Hahn-Banach will be provided.

To do so, we introduce a weak topology T, on the nonlinear dual space.
Let k>0 be fixed. For every finite set ac X, every ¢>0, and every
€ Lip.(X) we define

Ut (lo) = [} {1e Lipe(X); (x) —lo(x) <e}.

The collection of all these sets will form a subbasis for the topology 7.
Likewise we define
U,ly) = () {/eLip(X); l(x) —l(x) <&}

xXea

for /,e Lip(X) as a subbasis for a topology T on Lip(X). We then have for
k>0,

LEMMA 1. T, and T are locally convex Hausdorff topologies. A net of
functionals (l5) < Lip(X) (resp. (I;) = Lip(X)) converges to I, Lip,(X)
(resp. I, Lip(X)) in the topology T, (resp. T) if and only if it converges
pointwise.

The proof is not difficult and omitted here, it can be performed like the
proof of Satz (I.2.1) in [10]. We shall now provide a simple fact about
Lipschitz continuous functions with Lipschitz constant & which will be
useful in the sequel.

LEMMA 2. The pointwise limit of a net (l;) of Lipschitz continuous
Sunctions with Lipschitz index k is again Lipschitz continuous with the same
index k.

Proof. Let (I;,0€ D) be a net of Lipschitz continuous functions (all
with Lipschitz index k) converging pointwise to /,; here D is an ordered set
and “>7 is the order relation in D. Note that /;(x) exists for all x € X since

o(0)] < 1s(x)] + 115(x) — Lo(x)]

for all 3¢ D. If now £¢>0 is given and x, ye X such that g(x— y)>0 (if

x =y there is nothing to be shown), we may choose d,=3d,(¢) € D such

that for all § > d,, we have

k-e
2

k.
uo(x)fzo-(xn<78-q(x—y) and  |lo(y)— Is(y)l S =" g(x— »)
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and 4 > 9, yields

[o(x) = Lo(p)]
< o(x) = L) + [5(x) = L) + s 3) = Lo(p)]
<k - (1+¢) g(x—y).
This completes the proof since ¢ >0 was arbitrary. |

We denote by ext(A) the set of all extreme points of a set 4 and by
co(B) the convex hull of a set B and prove a Krein—Milman-type theorem
for Lip,(X). Part (a) of the proof is a slight modification of the one found
in [5,p. 439].

THEOREM 3. If k>0 is fixed and K < Lip,(X) is convex and compact

relative to the topology T,, then
(a) ext(K)#
{(b) K=7co(ext(K)).

Proof. To prove (a) let E be the nonvoid family of all closed extremal
subsets of K ordered by inclusion. If E, is a totally ordered subfamily of E,
then by compactness () E, is nonempty, extremal since it is an intersection
of extremal sets, and is a lower bound for E,. Hence by Zorn’s lemma,
there is a minimal element A, in E. We show that 4, contains one element
only and hence is an extreme point.

To this aim assume that /, and /, are two distinct elements of A4,; ie.,
there is a point z€ X such that

[1(z) # L(z).
But then

A= {le Ay l(z)=inf(a(z), ae A,)}

is a proper subset of A,. On the other hand L,, L,eK, A€ (0, 1) and
AL, +(1—=21)L,e A, imply

L, L,eA,,
since A, is extremal and from the definition of A4,, we conclude
L, L,ed,.

This shows that A4, is a proper extremal subset of 4, which is a contradic-
tion to A, being minimal.
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To prove (b), we first show that K is also a compact subset of Lip(X)
relative to the topology T. For, if

U 4

BeB

is an open cover of K in Lip(X), then by definition

U (A5 Lip(X))

BeB

is an open cover of K in Lip,(X) which has a finite subcover, say

N
U (A iy M Lip.(X)).

i=1

But then of course

N
U A/i(i)

i=1

1s a finite subcover of K in Lip,(X).
Since Lip(X) is a locally convex topological linear space with topology
T, we know that

K=c0'"(ext(K)),

where the closure is taken in the topology 7. But by Lemma 1, convergence
of a net (/,) in the topology T is equivalent to pointwise convergence in R,
so that Lemma 2 and

co(ext(K)) < K< Lip,(X)
imply
t6'"(ext(K)) < K < Lip,(X).
Since T, is the restriction of T to Lip,(X), we even have

co(ext(K)) <= K,

where the closure is taken relative to T).. This proves (b) since by definition
Kcto(ext(K)). |

Our next step is to prove an Alaoglu-Bourbaki-type theorem which is a
corollary to
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THEOREM 4. For every k >0 the nonlinear dual space Lip,(X) is compact
relative to the topology T,.

Proof. For every xe X, the interval I, .= [ —k - ¢(x), k- g(x)] is a com-
pact subset of the real line and by Tychonoff's theorem the product space

P = 1—[ I, = {[X—» U [‘,;[(X)EI‘}
ve X xex

is compact relative to the product topology which is generated by the sets

N {m,(U,); U,=1,open,ac X finite };

Yed

here n.: P — I is the projection mapping from P to the component /.. We
recall that a net (/,, e D) P converges to /€ P relative to the product
topology if and only if it converges pointwise in R.

Since we have the inclusion

P={IX->R;l(x) <k-q(x)}
o> {l: X > R; /| €k} >Lip,(X),
it suffices to show that Lip,(X) is closed in P relative to the product
topology.
But since convergence of a net (/;,0€ D)c Lip,(X) in the product

topology to /,€ P is equivalent to pointwise convergence, this immediately
yields

lo( —x) = ~ly(x)
for all xe X as well as
ol <k
and together with Lemma 2 we have
lge Lip,(X)
which completes the proof. |}
We now define for every /;€ Lip,(X) and p >0 the norm balls by
B (ly, p) == {leLip(X); [l,— Nl <p}.

Since B,.(/y, p) is a closed subset of Lip,(X) relative to the topology T, we
have
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COROLLARY 5. The norm unit balls B,(ly, p) are T -compact for every
k>0, leLip(X) and p>0.

Note that the norm unit balls are convex too, so that Theorem 3 can be
applied to B,(/,, p) in place of K.

Another important tool in the theory of normed linear spaces is the
Hahn-Banach extension theorem, which has numerous applications in
functional analysis as well as optimization and approximation theory. It
can be proved (in an analogous version) for the nonlinear dual spaces con-
sidered here. Unlike the classical case, the proof here will be constructive; it
has to be mentioned, however, that the result is not a generalization of the
classical theorem in the case where ¢ is a norm, since the extension con-
structed is not linear in general. The extension principle was first used by
McShane [8] in 1934. He used the function L, below in the case where p is
a norm, and showed that it has the same Lipschitz constant as /.

THEOREM 6. Let p: X - R be even and subadditive with p(0)=0 and let
V < X be a linear subspace. Then every odd function
LV-R
with

Ku)—l(v) < p(u—v)

for all u,veV has an odd extension L to all of X satisfying
Lx)=Ly)s plx—»)
for all x, ye X.
Proof. For every xe X, we define
L(x):=sup{{(v)—- p(x—v),veV}
and
Lix) = inf{l(u)+ p(x —u), ueV}.
If u,ve V and x e X are chosen arbitrary, we have
Kv)— p(x —v) < l(u) + p(u—v) — p(x —v) <Uu) + p(x —u),
since p is even and this yields

L(x)<Lix)
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for all xe X. Using p(0)=0 we know that
llv)<L(v)< Liv)<lv)

holds for all ve V' and it follows that both L, and L, are extensions of /. If
X, v€ X and ¢> 0 are chosen arbitrary, we have

L(x) = L(y)=sup{l(v)— p(x—v)} —sup{{(u) — p(y —u)}
<Ue) = plx—v,)+e—((e,) = ply—1,))
<plx—yi+e

for some v, e V; since £> 0 is arbitrary this yields
Lix)—LJ(y)<plx—y) for all x, ye X. (1)
The inequality
L(ix)—L(y)<px—1y) for all x, ye X (2)

can be shown analogously.
If we did not want the extension L to be odd, both L  and L, would have
the desired properties, but since they are not odd in general, we define

L (x) if L(x)>0,
Lix):=¢0 if L (x)<0<L(x),
LAx) if L(x)<O.

Since L, as well as L, are extensions of /, so i1s L. It is easy to sec that
—L(x)=L(—x) and —Lix)=L(~x)

for all xe X and this implies — L(x)= L(—x) for all xe X and hence L is
odd.
It now remains to show that L satisfies

L(x)=L(y)splx—y)
for all x, ye X. For arbitrary x, ye X, we consider the four cases:
Case 1. L(x)>0and L(y)=0.
Case 2. L(x)>0and L(y)<0.
Case 3. L(x)<0and L(y)=0.
Case 4. L(x)<0and L(y)<0.
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Case 1 follows from (1) and L(x)}— L(y) < L,(x)— L,(y). Case 2 follows
from (2) and L(x)— L(y)< L (x)— L{y)<L{x)— L/(y). Case 3 is trivial.
Case 4 follows from (2) and L(x)— L(y)< L,(x)— L(y). This completes
the proof. |

As a consequence of Theorem 6, we shall show that every functional
/e Lip,(V), where V is a linear subspace of X, has a norm-preserving exten-
sion to all of X this fact is formulated in

THEOREM 7. Let k>0 be fixed and V< X be a linear subspace, then
every le Lip, (V) has a norm-preserving extension L e Lip,(X).

Proof. We use the same construction as in the proof of Theorem 6. The
mapping

k-gX-R
which is defined by
(k- q)(x) = k-q(x)

for every xe X has all the properties required for p in the preceding
theorem, so that it suffices to show that the extension L preserves the norm

if in the construction we replace p by k- ¢. As L is an extension, it will be
enough to show that

LI x < Iy

To this aim choose an arbitrary xe X\{0}. If L(x)=0, then of course
|L(x)|/q(x)< |||, and we only have to consider:

Case 1. L(x)>0.
Case 2. L(x)<0.

For Case 1, we have

q(x) q(x) re 10} q(x)
Now, if for ve ¥, we have g(x) < g(v), then [(v)/q(v) < k yields

1) 209 ) — g <k glx—v)
g(v)
or
l(v)—k q(x—v) v)
- L—=K e 3
TRl 3)

If on the other hand, ¢(x) < g(v), the last inequality is obvious.
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Case 2. In this case, by the symmetry of L, we have

[L(x) _ —L(X):L(‘-\‘)
g(x) g(x) g(x) '

and if we replace x by —x get Case 1.

So inequality (3) holds for all xe X and we have

Lix
1Lty =sup E N <y
w0 g(x)

This completes the proof. ||

We shall not investigate the numerous consequences of the Hahn-
Banach theorem in this context, but only those used in the sequel to charac-
terize best approximations in metric linear spaces. Stating the preliminaries
for the approximation theoretic considerations, we need an additional
property of the quasinorm g, which ensures that the unit balls (in the
metric space X) are connected.

We call a quasinorm ¢: X — R monotone, if

gl1x) < g(sx)

holds for all 7, se R with [¢] <]s].
We shall now briefly sketch the proof of the following:

Remark. 1f X# {0} and the quasinorm ¢ is monotone, then
(Lip(X), |IIl} is not complete.

Sketch of Proof. First we note, that

Lip(X)= |J Lips(X)
k 1

and that by the Baire category theorem it suffices to show that, for all
ke N, Lip,(X) is closed (in Lip(.X)) and has no interior points.

Let ke N be fixed. Lemma 2 shows that Lip,(X) is closed in Lip(X). So
let fe Lip,(X) and ¢>0 and x,e X\ {0} be chosen arbitrarily. Then define
V .= span{x,} and choose 1> >0 such that

45+ Xo) < o

4.k"1(t'x0)

for all se [0,6] and 1€ [1—0,1+d]. Then choose Ke N such that

4-k>K>2k
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and define a function #: V> R by

0, el <19,
Ksgn(a) g((la] = (1 =9)) xo), 1—-d<|a|l<],
Ksgn(a) g(((14+0)—laj): xq), <ol <144,
0, lal = 1+4.

One may then show that

(a) k¢ Lip,(V),
(b) lal, <e,
(c) heLipy(V).

By Theorem 7, / has a norm-preserving extension H to all of X and hence
the function f, := f+ H is in Lip(X) and we have

If=All=1H]<e

But on the other hand
| fi(x0) = f1((1 = 8) - xo)| Z k- q(xo— (1 —0)" x,),

so that f, ¢ Lip,(X), which means that f cannot be an interior point. This
finishes the proof of the remark. |

In the sequel g is always assumed to be a monotone quasinorm. If V< X
is a subset of X and xe X, we define

g(x—V) = inf g(x —v);

reV

then we have

LEMMA 8. If V< X is a subspace and x € X\V, then there is a functional
[e Lip,(X) such that

(@) =t
(b) lx)=q(x-V),
(c) Ux)=Ux+v)foralveV.
Proof. Let V, be the sum of V and the one-dimensional linear space
spanned by x, i.e,

Vo= {v+ax;veV,aecR}.
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We then define /,: Vy— R by
lo(v+ax) = (sgn(x)) - glax — V).
/, 1s continuous and (b) and (c) hold for /=/,. Further
— (v +ax)=1(—(v+ax))

for all ve V and ae R and

{Uo(v+w€)l

-V
20+ ox) ;v+ozx9é0}=sup{i(—o£—)'v+axaé0}<l

glax +v)’

so that
ol vy = 1.

We now show that for all u,ve V and o, fe R
Ho(u+ox)—l(v+ px)] <2 g((u+ax)— (v + fx))
holds, i.e., /, is in Lip,(¥,). To this aim we consider five cases.
Case 1. Fither x=0or f§=0.
Without loss of generality we may assume x =0, then we have
Ho(u+ax)—ly(v+ Bx)| <qg(px—V)<q((fx +v)— (ax+ u)).
Case 2. x>0 and >0.
Let £>0 be given and choose w, € V such that
g(Bx+w,) <q(fx—V)+e,
then
ly(u+ax)—lv+ px)y=qlax—V)—q(fx=V)
<qglax+ (u—v+w,))—q(fx+w,)+e
<gllax+u)—(fx+v)) +¢
by the same argument one shows that
lo(v+ Bx)—lp(u+ax) <g((ax+u)— (fx+v)) +¢
holds and since ¢ >0 was arbitrary the result follows.
Case 3. x<0and f<0.

This case can be treated as in Case 2.



NONLINEAR DUALITY 213

Case 4. a>0and f<0.
Since ¢ is monotone we have
Wo(v + ax) = lo(u + px)| = glax — V) + q(Ipl x = V)
<gq((e+ 1B x—=V)+q((Ipl +a) x— V)
<2-q((ox +u)— (fx +0)).
Case 5. a<0Oand f>0.

This can be treated as in Case 4.

We have constructed /, € Lip,( V) which satisfies (a), (b), and (c) and by
Theorem 7, /;, has a norm preserving extension to all of X. This completes
the proof. |

Setting V' := {0} in the preceding lemma, we have a corollary which
shows that the nonlinear dual space contains “enough” functionals.

COROLLARY 9. If k=2, then
g(x)=max{/(x);/e B,(0,1)}  forall xeX.
As in the theory of linear dual spaces, we can describe the quasinorm via

the extremal functionals of B,(0, 1). This will be a consequence of

THEOREM 10. If'V is a linear subspace of X, then every functional | which
is an extreme point of the unit ball in Lip, (V) has an extremal extension
Leext(B,(0, 1)).

Proof. Let E(I) be the set of all norm-preserving extensions of / to all of
X. E(!) is nonempty by Theorem 7 and convex and we shall show that E(/)
is an extremal subset of B,(0, 1).

Forif L,, L,e B,(0,1), Ae(0, 1) and

L=AL,+(1—4)L,e E(]),
it follows from L, =/ and [ being extremal that
Lyy=Lyy=1
since | Lyil = Lol y =1Ly x = | Lol x = Il , we have
L,, L,e E(]).

Since pointwise limits of nets (/;, e D)< E(/) are again in E(J), this
shows that E(/) is a closed subset of B,(0, 1) relative to the topology T,
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and hence by Corollary 5 compact, so that by Theorem 3 it has extreme
points. This completes the proof. |

It is easy to see that if xe X" {0} and V' := span{x}, the space spanned
by x, then for k > 2 the functional /: V' - R defined by

lax) = sgn(a)- g(ax)

is an extreme functional of the unit ball in Lip,(¥). As a consequence of the
preceding theorem, / has an extension to an element of ext(B,(0, 1)). We
therefore obtain

COROLLARY 11. [f k=2, then

g(x)y=max{l(x); /eext(B,(0, 1))} for all xe X.

ITI. CHARACTERIZATION OF BEST APPROXIMATIONS

The approximation problem in a metric linear space considered here is
posed as follows:

If V=X is a linear subspace and xe X\ V, we are looking for elements
v e V such that

glx—0)y=q(x—V). (4)

Every element ¢ e V that satisfies (4) is called a best approximation {to x
from V in the quasinorm g); the set of all these best approximations is
denoted by

PV(x, ‘])

which may be empty of course even when V is finite dimensional.

In this chapter, we give characterizations of best approximations (in the
above sense) by elements of the nonlinear dual space Lip,(X). The charac-
terizing properties and their proofs are very similar to the ones known
from the theory of normed linear spaces (cf. [3, 6, 12]) and they show that
the nonlinear dual space introduced here in many ways behaves like the
linear dual space of a normed linear space.

It remains to be seen, however, what the functionals and the extreme
functionals in particular look like when we consider special metric linear
spaces. As far as it is known to the author this has only been done in very
simple cases (cf. [10]).

The first characterization presented here is a simple corollary to
Lemma 8.
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THEOREM 12. If V < X is a linear subspace and k =2, then € V is a best
approximation to x € X\V if and only if there exists a functional | € Lip,(X)
such that

(@) =1,
(b) llx—70)=¢q(x—0),
(¢) lUx)=IUx+v) foralveV.

Proof. 1f this functional exists, then
q(x—0)=lx—0)=lx—v) < |l g(x —v) =g(x —v)

shows that 7 is a best approximation. The necessity part of the proof is a
trivial consequence of Lemma 8 and hence omitted. |I

In normed linear spaces a best approximation can be characterized by
(a), (b), and (c) of Theorem 12, where / is a continuous linear functional
(cf. [12, p.18]). The next proposition will show that in many cases of
quasinormed spaces there is no linear functional to characterize best
approximations in this way. We therefore define the set

Thx)={LX->R |l =11x)=qg(x— V), [(x)=lx+v)forallve V}

which is easily seen to be convex. With this definition we have

PROPOSITION 13. Let k=2 and V = X be a linear subspace. Assume that
for every ye X\{0} there is a real number t =1t(y) >0 such that

t-q(y)>qlt-y).

Then for every x € X\V with P, (x, q) # &, T%(x) does not contain a linear
functional.

Proof. Let xe X\V with P,(x, q)# & and 5 P,(x, q). Then suppose /
is a linear functional in T%(x). Since /(r)=0 for all ve ¥V and I(x)=
g(x —1)>0, we have for t=1(x—7)>0 that

gtx=0)) =z lt(x—0))=1t lx)=1t g(x—7D)

which is a contradiction to our assumption. ||

Note that the assumption in Proposition 13 is satisfied for every
bounded quasinorm and in particular for every p-norm (0<p<t)
(cf. [9, Satz 3.3]).

Another important characterization of best approximations in the theory
of normed linear spaces uses extreme functionals of the dual unit ball and
is due to Garkavi [6]; these are also convenient in the usual concrete

640/493-2
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spaces because for these spaces the general form of the extremal points is
well known and simple. The characterizations can be generalized to metric
linear spaces, but in this case the extreme functionals are only known for
very simple examples. We define for k> 2 and yve X,

Ei(y) = {leext(B,(0, ) H(y)=4(y)}

the set of peaking extreme functionals, which by Corollary 11 is always
nonempty. By making natural modifications in the proof of Garkavi’s
theorem as given in [4, Theorem 3.9], we then have

THEOREM 14. If V< X is a linear subspace and k =2 and x € X\V, then
the following three statements are equivalent:

(A) veP,lx q).

(B) To every veV there is a functional =1, € E (x —0) such that
(x—v)—Ix—10)=0.

(C) max{l(x—v)—lx—10);le E(x—0)} 20 for all ve V.

Proof. (A)—> (B} Let veP,(x,q) and veV be chosen arbitrarily.
Then we define the set of peaking functionals

P:={le B0, 1); {x—0)=q(x—1)}
and the set

P.={le P, l{(x—v)—l(x—0)=sup{lo(x—0v)—l(x—70)}}.

lye P

By Corollary 9, P is always nonempty, further it is convex and closed
relative to the topology T, and hence by Corollary 5 compact.
Also 1, e B.{(0, 1), Ae(0,1) and /:= il, + (1 — )/, € P together with

gx—0y=lx—0)=A(x—0)+ (1 —A4) L{(x—D)<g(x—7)
imply
l,,l,eP

and thus P is an extremal subset of B,(0, 1).
If we define

FB(0,1)-R
by
F(]):= l(x—v)—I(x—17),



NONLINEAR DUALITY 217

then F is continuous relative to the topology T, and if /,, /, € B,(0, 1) and
A€ [0, 1], then

F(AL+(1=A) L)y=AF(l))+ (1 = 1) F(L,).
Further
P,={le P, F({)=max F(,)}

lhe P

is convex, compact (relative T,) and an extremal subset of P, since
L,,L,eP, ie(0,1)and L= AL, +(1—4) L, e P, together with

F(L)=AF(L,)+ (1 — 4) F(L,) < F(L)

imply
L, L,eP,.

By Theorem 3 ext(P) and ext(P,) are nonempty and F attains its
maximum on P at an extreme point of P. Hence there exists a functional

leext(P)ycext(B,(0, 1))

such that
x—v)—lx—0)=2ly(x—v)—Ily(x—10) for all /,e P.

Together with the definition of P it follows that /e E,(x — ), but by
Theorem 12, there is a functional /,€ P with

lo(x—v)—l(x—0)=0

from which /(x —v)—I(x — 0) 2 0 is evident.
(B)—= (C) From (B), it follows immediately that
sup{/(x—v)—x—70);le E(x—0)} >0

and it remains to be shown that this supremum is actually attained. But if
we define F, P, and P, as in the proof of (A)— (B), this follows
immediately from the fact that P, is convex and compact.

(C})—(A) Let veV be chosen arbitrary and /e E,(x - 7) such that

I(x—v)—l(x—0)=0,

then we have
gx—0)=lx—0)=lx—v)+ ({(x—0v)—lx—v))<Ux—v)<q(x—1)

and hence 7 is a best approximation to x from V. This completes the
proof. |
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